SINGLE VARIABLE CALCULUS. PART I: DIFFERENTIATION. PART A: DEFINITION AND BASIC RULES. UNIT 0: LIMITS REVIEW. PART 3: Limit of quotients

  SINGLE VARIABLE CALCULUS


PART I: DIFFERENTIATION
PART A: DEFINITION AND BASIC RULES

UNIT 0: LIMITS REVIEW
PART 3: Limit of quotients

Limit of quotients
I. Limit Law for Division  

Limits and division

                    
          Limit Law for Division 
     
If $$\lim↙{x→a}f(x) = L$$ and $$\lim↙{x→a}g(x) = M$$ then:
  •     If $M$≠$0$ , then $$\lim↙{x→a}{f(x)}/{g(x)} = L/M$$ 
  •     If $M = 0$ but $L  ≠ 0$, then $$\lim↙{x→a}{f(x)}/{g(x)} = L/M$$ does not exist
  •     If both $M = 0$ and $L = 0$ then $$\lim↙{x→a}{f(x)}/{g(x)} = L/M$$ might exist or not. More work is needed to determine whether the last type of limit exist, and what it is if it does exist.
Using the Division Law


Infinite Limits

Infinite Limits 2

Comments